

Results of a case-crossover study in Toronto and Vancouver

safety concerns deter cycling

Survey of 1400 cyclists & potential cyclists in Metro

Vancouver, top deterrents all related to safety

- ice & snow on route
- car, bus & truck traffic
- vehicles driving faster than 50 km/h
- glass or debris on route
- motorists who don't know how to drive safely near bikes
- risk of injury from car-bike collisions

So how do we make cycling safer?

differences in cycling injury rates - Europe & NA

why the differences?

It's not the Europeans who wear helmets

- helmets do reduce post-crash severity of head and face injuries
- but they don't prevent crashes

why the differences?

Best evidence: safety in numbers

[source: Jacobsen. Injury Prevention 2003;9:205-9]

why the differences?

What about **route infrastructure**?

- typical in North America to provide little or no bike infrastructure
- in high cycling European countries, usually provide separated facilities where motor vehicle traffic volumes and speeds are high

North America: John Forester 'vehicular cycling'

Bicyclists' Injuries & the Cycling Environment

participating cities

Vancouver

- 2 participating hospitals
- 0.6 million people
- rain in winter, temperate summer
- lots of hills
- 26 km of bike lanes & paths per 100,000 population
- 3.7% of trips by bike

Toronto

- 3 participating hospitals
- 2.5 million people
- snow in winter, heat in summer
- mostly flat
- 11 km of bike lanes & paths per 100,000 population
- 1.7% of trips by bike

study overview

interview to map route & choose control sites

observations of injury & control sites

"case-crossover" design features

Study results

participants & trips

TorontoVancouver	²⁷³ ₄₁₇ } 690
male19 to 39 years oldincome > \$50,000cycle > 52 times/year	59% 62% 56% 88%
wore helmetwore high viz clothes	69% 33%
trip < 5 kmweekday, daylight	68% 77%
commuteother transport	42% 32%

injury circumstances

comparison of 15 route types

main focus of study

relative risks by route type

relative risks by route type

on or alongside major streets . . .

RR = 0.70 RR = 0.55 RR = 0.11

bike lane with parked cars

bike lane without parked cars

cycle track

on residential streets . . .

RR = 0.69

traffic slowing

traffic diversion

other features studied

these not significant

relative risks of other significant features

downhill grades . . .

a special risk in Vancouver

Sometimes compounded with difficult route features:

- limited sight lines
- traffic circles
- speed bumps

streetcar tracks . . .

a special risk in Toronto

almost one-third of crashes

interactions with cars important, because many crashes begin with aviodance manouevres

construction . . .

Are safe routes also preferred routes?

bike only paths 85% likely to choose

paved multi-use paths 77% likely to choose

route preferences: top 5 of 16

unpaved multi-use paths 71% likely to choose

cycle tracks 71% likely to choose

local street bike routes with traffic calming 65% likely to choose

route preference vs. safety

best route types to encourage cycling & prevent injuries

cycle tracks along major streets

local street bike routes with traffic diverters

off-street bike only paths

limitations

Most severe and mildest injuries not included

- •all injury studies focus on defined categories of injuries
- •here, those who attended emergency department within 24 hours

Not possible to test many route designs available in Europe:

- •multiple types of cycle tracks
- •innovative intersection designs

But more route designs tested than in other studies to date, all objectively measured.

Cycling injuries vs. health

transportation & illness

risks vs. benefits of cycling

authors	location	benefits & risks taken into account	ratio of benefit : risk
British Medical Association, 1992	United Kingdom	↑ physical activity ↑ traffic crashes	20:1 lives saved vs. lost
Woodcock et al., 2009	London, England	physical activitypopulation air pollutiontraffic crashes	49:1 lives saved vs. lost 15:1 DALYs saved vs. lost
Johan de Hartog et al., 2010	Netherlands	↑ physical activity↑ traffic crashes↑ individual air pollution	9:1 lives saved vs. lost
Rojas-Rueda et al., 2011	Barcelona, Spain	↑ physical activity↑ traffic crashes↑ individual air pollution	96:1 lives saved vs. lost
Rabl & de Nazelle, 2012	Europe	 physical activity population air pollution traffic crashes individual air pollution 	19:1 Euros saved vs. lost

Vancouver study team

- Melody Monro
- Evan Beaupre
- Niki Blakely
- Jill Dalton
- Martin Kang
- Theresa Frendo
- Jack Becker
- David Hay
- Peter Stary

Toronto study team

- Lee Vernich
- Vartouji Jazmaji
- Kevin McCurley
- Andrew Thomas
- Doug Chisholm
- Nancy Smith Lea
- Fred Sztabinski
- David Tomlinson
- Barbara Wentworth

Funders

